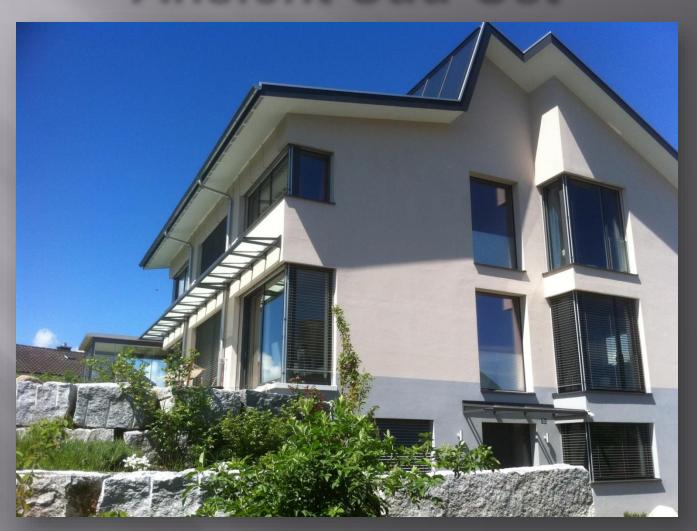


Energie-Treffen am Säntis

Das fast energieautarke Haus – eine Kosten-Nutzen-Optimierung


- Aktiv-Solarhaus mit125% Eigenversorgung
- Umgesetzte Energieund Komfort-Konzepte
- Qualitative und quantitative Evaluation
- Abschätzung Mehrkosten / Mehrnutzen
- Schlussfolgerungen

Wetziker Plusenergiehaus

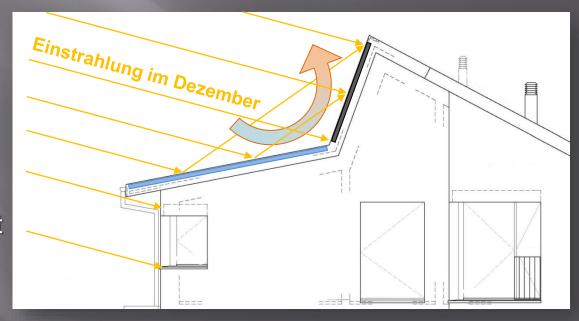
Einfamilienhaus mit Einliegerwohnung/Büro (EBF = 350 m²)

Ansicht Süd-Ost

solar campus

Zügel-Chärtli

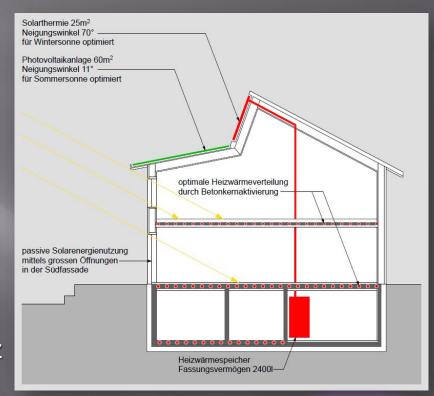
solar campus

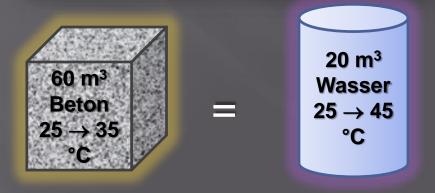

Optimierung von Kollektor- und PV-Feld

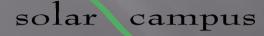
Erhöhung des Solarertrages im Winter:

- Reflexion PV → Kollektoren: Einstrahlung +10 bis +30 %
- Abwärme PV → Kollektoren: Temperatur +5 bis +20 °C
- > Thermische Leistung +20 bis +100 % / Solarertrag im Winter + 20%

Effekte im Sommer:


- weniger Überhitzung
- > Reflexion ST → PV
- PV+ST → Kamineffekt




Betonkern: Solarspeicher für eine Woche

Betonkernaktivierung:

- "Fussbodenheizung im Betonkern"
- Vorhandener Beton wird genutzt
- ➤ Temperaturbereich 25 → 35 °C
- Aktivierbares Volumen: 60 m³
- > ...entspricht 20 m³ Wasserspeicher
- ...oder der Energie von 100 kg Holz
- Gesamter Perimeter gedämmt
- Selbst-regelnde Wärmeabgabe

Spezialglas "SunPattern"

Glasmuster mit jahreszeitlich variabler Lichtdurchlässigkeit:

• Transmission im Sommer: 15%

Transmission im Winter: 45%

Transmission bei Schlechtwetter (Diffuslicht): 30%

Wärmeüberschuss nutzen

Sitzplatz-Wärmestrahler

Heisswasser in der Küche

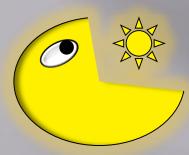
solar campus

Sauna-Konvektor

Geschirrspüler

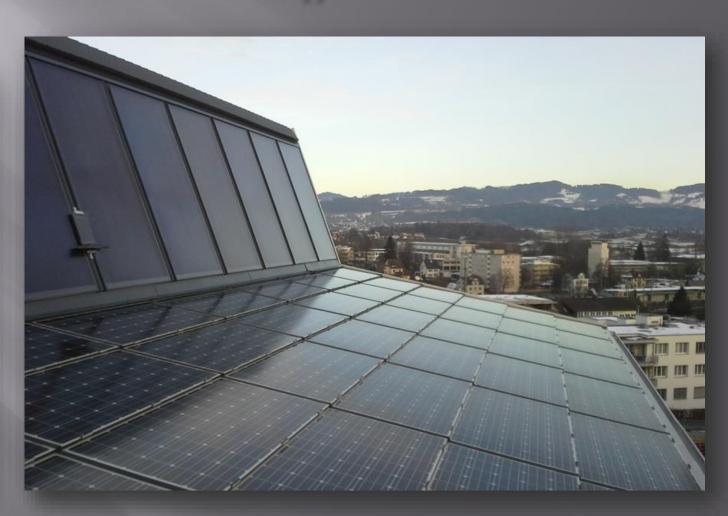
Waschmaschine

Weitere Energiesparmassnahmen

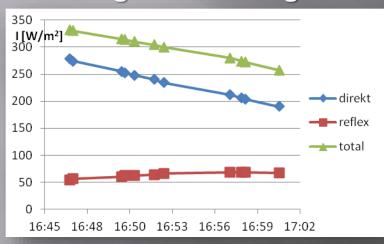

Am Gebäude:

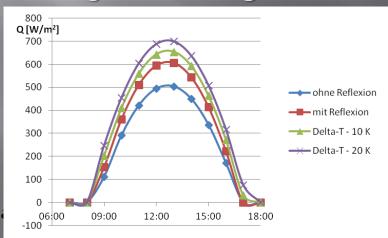
- Gebäudehülle: Minergie-P-Standard (U = 0.1 W/m²/K)
- Innenausbau: Lehmwände und Lehmputz
- Solararchitektur: grosse Fenster südseitig
- Wohnzimmer mit Schieferboden (Strahlungsabsorption)

Haustechnik:

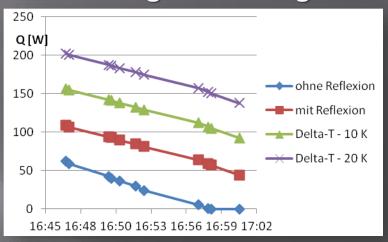

- Kondensierende Pellets-Heizung (1 Silofüllung reicht für 3 Jahre)
- Kontrollierte Lüftung: Wärme-/Feuchterückgewinnung
- Energiesparende Geräte: LED, Induktionsherd, Effizienz-Pumpen
- Küchenabzug: Aktivkohlefilter

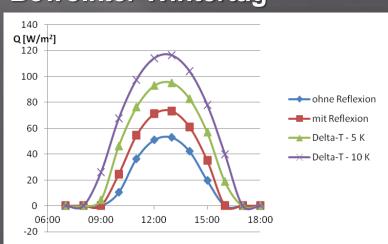
Dach mit "Knick"




solar campus

Effekt der Reflexion


Messung Einstrahlung

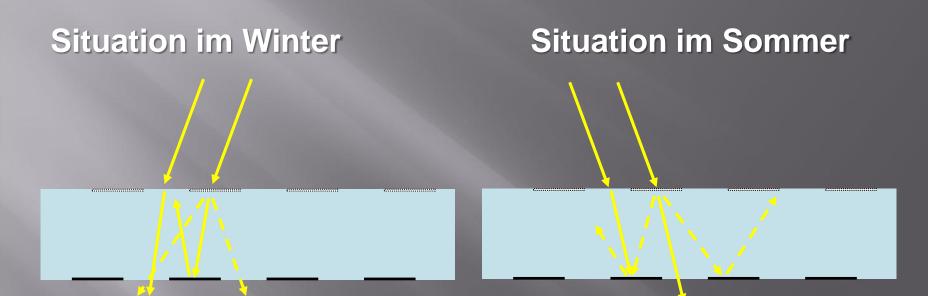

Sonniger Wintertag

Auswirkung Solarertrag

Bewölkter Wintertag

Betonkern als Solarspeicher

Spezialglas "SunPattern"


Niedrige Transmission

Hohe Transmission

Wie funktioniert SunPattern?

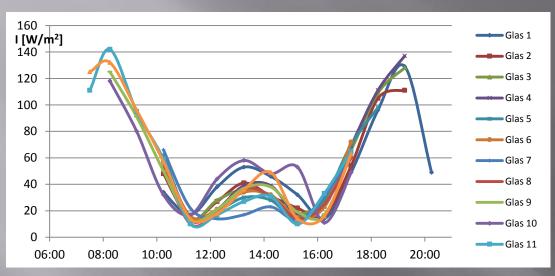
→ Passive Energiegewinne

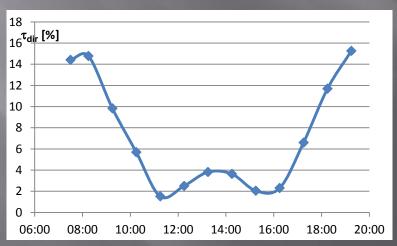
→ keine Überhitzung

SunPattern-Vordach (Südseite)

21.03.2014: Transmission = 50 %

04.05.2014: Transmission = 25 %

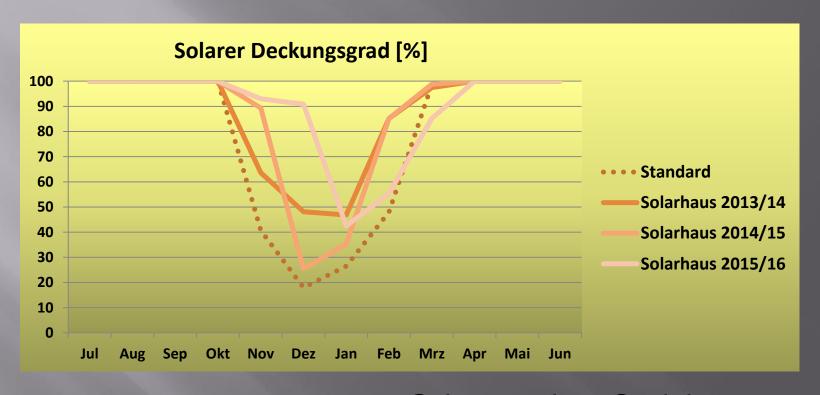



....

21.06.2014: Transmission = 1 %

solar campus

SunPattern-Messung (21.6.)



solar campus

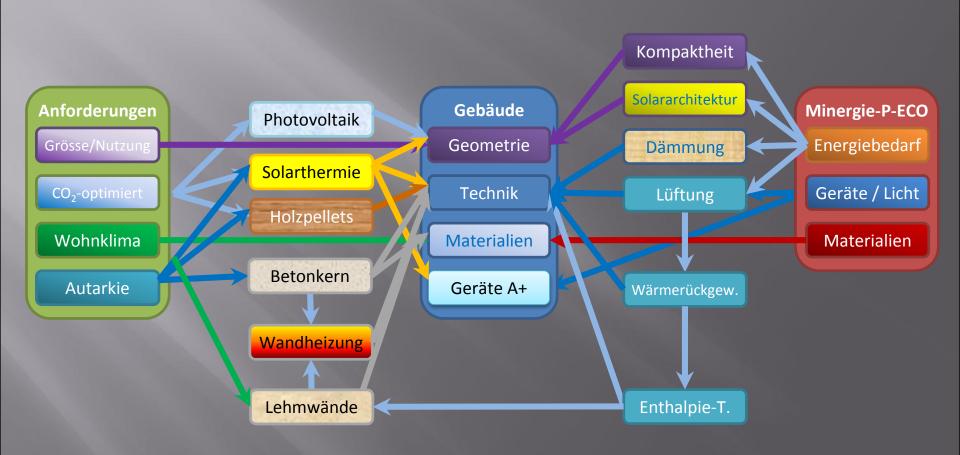
Energiekennzahlen

Solarer Deckungsgrad = Solarenergie an Speicher Gesamtenergie an Speicher

Aktiv-Solarhaus: Energiebilanz

- Stromproduktion (Einspeisung)
- Stromverbrauch (Haushalt & Technik)
- Holzpelletverbrauch (600 kg)
- Bilanz ("1 kWh = 1 kWh")

- + 10'000 kWh
 - 5'000 kWh
 - 3'000 kWh
 - + 2'000 kWh



Gebäudekonzept planen

- Art der Nutzungen / Ausnützung / Flexibilität / Erweiterbarkeit
- Platzbedürfnisse (Zahl und Grösse der Zimmer)
- Beziehung zur Nachbarschaft und Umgebung (Aussicht)
- Klima und Umgebung (Bodenbeschaffenheit)
- Versorgungsituation (Zuleitungen, Netze)
- Energiegesetze, Normen
- Orientierung, nutzbare Dach- / Fassadenflächen
- > Gebäudecharakter, Ästhetik, Bauökologie, Baubiologie, Akustik
- Graue Energie, Statik, Erdbebensicherheit, Rückbaubarkeit, etc.

Aktiv-Solarhaus planen

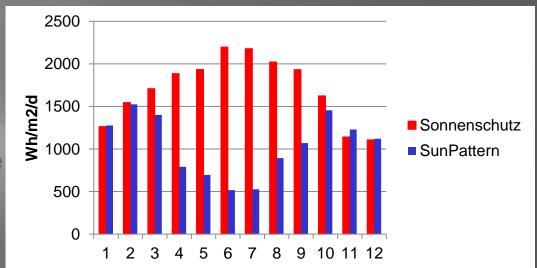
SunPattern: Kosten/Nutzen

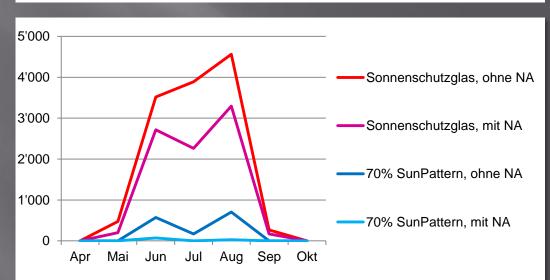
Beispiel eines Bürogebäudes (Hauptanwendung):

- \triangleright Vollständige Glasfassade (Sonnenschutzglas mit τ = 13%)
- > Kühlung im Sommer mittels Kühldecken und Lüftungskühlung
- Hoher Heizbedarf im Winter

Günstige Voraussetzungen:

- Geringe interne Lasten
- > Hohe Wärmekapazität


Wirkung von SunPattern

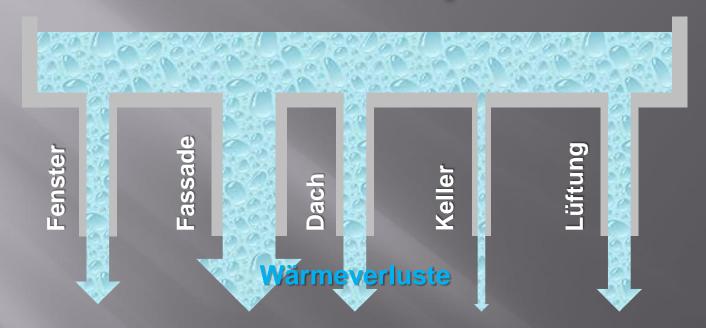

Tages-Sonneneinstrahlung

- Konventionell/SunPattern
- Normalglas: Sommerpeak
- SunPattern: Sommersenke

Kühlbedarf Sommer

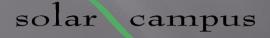
- Ohne Nachtauskühlung
- Mit Nachtauskühlung
- ➤ SunPattern ↔ Kühldecke
 - → nach 20 J. amortisiert

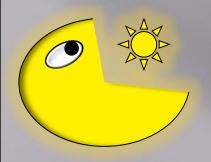
Aktiv-Solarhaus: Kosten/Nutzen


Gewerk	Alternative**	Mehr- kosten	Lebens- dauer	kWh/a	kWh	Rp/kWh*	Mehrnutzen
Gebäudedämmung	Standard (MuKEn)	25'000	60	1'200	72'000	35	Wohnkomfort
Kontrollierte Lüftung	Fensterlüftung	22'500	60	1'200	72'000	31	Luftqualität
Fenster	-20 % Transmission	6'700	30	600	18'000	37	Autarkie
Pellets kondensierend	-10 % Pellets	2'200	20	300	6'000	37	Autarkie
Dach mit Knick	36 m ³ mehr Estrich	14'400	60	1'200	72'000	20	Autarkie
Betonkernaktivierung	Fussbodenheizung	8'000	60	1'200	72'000	11	Autarkie
Solarthermie	Pellets/Kleinspeicher	48'000	30	12'000	360'000	13	CO ₂ , Autarkie
PV (KEV)	Eternitdach	30'000	30	10'000	300'000	10	Rendite
Pellets	[Wärmepumpe]	26'100	20	3'000	60'000	(44)	CO ₂ -arm
Enthalpietauscher	Wärmetauscher	2'800	30	200	6'000	47	Luftfeuchtigkeit
LED	konv. Lampen	0	15	-500	-7'500	0	Rendite
Deckenstrahler	[Holzofen]	3'000	30	300	9'000	33 [-20]	Wohnkomfort
Saunakonvektor	[konv. Sauna]	2'600	30	300	9'000	29 [-20]	Wohnkomfort
Heisswasserhahn	[Quooker]	1'000	30	200	6'000	17 [-20]	Wohnkomfort
Wandheizung (Lehm)	[Monoblock]	10'700	60	1'000	60'000	18	Wohnkomfort

^{*)} Diese Energiekosten sind sehr spezifisch und gelten nur für das betrachtete Objekt.

^{**)} Alternativen in [eckigen Klammern] werden in die Energiekosten nicht eingerechnet.




Gebäudehülle optimieren

Parallele Wärmeströme: grosser Wärmewiderstand = kleiner Verlust

- "Die Kette ist so stark wie ihr schwächstes Glied"
- Bei einer Sanierung/Planung den schwächsten Abschnitt verbessern
- Einzelmassnahmen nicht "übertreiben"

Schlussfolgerungen

- 1. Nutzungsbedürfnisse haben 1. Priorität
- 2. Wünsche, Konzepte und Ideen sammeln
- 3. Energiekonzept ortsspezifisch wählen
- 4. Synergie-Potentiale evaluieren

- ➤ Abwägen Mehr-Kosten ↔ Mehr-Nutzen
- Die "letzten 10 %" sind die teuersten
- Es ist nicht alles kalkulier- und planbar

Nützliche Websites zu Solarthermie + Photovoltaik

Website	Beschreibung		
www.energieschweiz.ch	Viele nützliche Hinweise für Bauherren		
www.swissolar.ch	Branchenverband Solarenergie → Solarprofis		
www.pvtarif.ch	Karte aller Einspeisetarife in der Schweiz (PV)		
www.kollektorliste.ch	Zertifizierte Kollektoren ("Solar Keymark")		
www.qm-solar.ch	Validierte Leistungsgarantie VLG (Solarthermie)		
www.bauwelt.ch	Förderprogramme Solarenergie und Gebäude		

